Estelle RATHAHAO-PARIS

INRAE Research engineer, HDR

Sorbonne University
4 Place Jussieu, 75252 Paris cedex 5
Tower 42-43, 4th floor
CSOB Group
Tel: 33(0)1 44 27 31 80

Research interests

  • Metabolomics and exposome studied by mass spectrometry: Development of methods for analyzing complex mixtures at high throughput

Current research

  • Metabolomic studies and chemical exposome characterization
  • Isomers distinction and quantification by ion mobility coupled with mass spectrometry (IM-MS)

Selected recent results

  • Analysis of human milk oligosaccharide isomers: Delvaux A., et al. Anal. Chim. Acta, 2021, 1180, 338878, https://doi.org/10.1016/j.aca.2021.338878; Rathahao-Paris E., et al. J Mass Spectrom. 2022 Oct;57(10):e4885, doi: 10.1002/jms.4885. (Featured Article for issue JMS 57:10).

Scientific career

  • 2017-: hosting agreement within IPCM
  • 2018-: INRAE research engineer, UMR MTS, CEA-Saclay
  • 2010: Habilitation to conduct researches (HDR), Pierre et Marie-Curie university
  • 2006-2017: INRA research engineer, AgroParisTech, Paris
  • 1998-2006: INRA research engineer, Laboratoire des Xénobiotiques, Toulouse.
  • 1997-1998: Post-doctoral fellow, Centre d’Etude du Bouchet, Vert-le-Petit
  • 1997: PhD, Pierre et Marie-Curie university (Supervision: Pr. J.-C. Tabet)
  • 1993: Master degree (DEA) Chemistry, Pierre et Marie-Curie university

Publications Récentes

  1. Rapid structural characterization of human milk oligosaccharides and distinction of their isomers using trapped ion mobility spectrometry time-of-flight mass spectrometry. Rathahao-Paris E., Delvaux A., Li M., Guillon B., Venot E., Fenaille F., Adel-Patient K., Alves S. J Mass Spectrom. 2022 , 57, e4885. Featured Article for issue JMS 57:10. https://doi.org/10.1002/jms.4885
  2. Different ion mobility‐mass spectrometry coupling techniques to promote metabolomics. Delvaux A., Rathahao‐Paris E., Alves S. Mass Spec Rev., 2022, 41(5),695-721. (Revue) https://doi.org/10.1002/mas.21685
  3. High-Throughput Metabolomics Using Flow Injection Analysis and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rathahao-Paris E., Alves S., Paris A. Chap 2. In: Wood P.L. (eds) Metabolomics. Neuromethods, vol 159. Humana, New York, NY. 2021, p. 9-21 https://doi.org/10.1007/978-1-0716-0864-7_2
  4. Mass spectrometry-based metabolomics for an in-depth questioning of human health. Alves S., Paris A,Rathahao-Paris E. Chap 4. In Advances in Clinical Chemistry, Ed. G. S. Makowski, Elsevier Inc., 2020, 99, 147-191. DOI: 10.1016/bs.acc.2020.02.009
  5. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high throughput metabolomics fingerprinting: control of data quality. Habchi B., Alves S., Jouan-Rimbaud Bouveresse D.,AppenzellerB., Paris A., Rutledge D. N., Rathahao-Paris E. Anal. Bioanal. Chem., 2018, 410, 483-490. https://doi.org/10.1007/s00216-017-0738-3
  6. How to really perform high throughput metabolomics analyses efficiently ? Habchi B., Alves S., Paris A., Rutledge D. N., Rathahao-Paris E.Trends Anal. Chem., 2016, 85, 128–139. (Revue) https://doi.org/10.1016/j.trac.2016.09.005
  7. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Rathahao-Paris E., Alves S., Junot C., Tabet J.-C. Metabolomics, 2016, 12 (1), 1-15. (Revue) https://doi.org/10.1007/s11306-015-0882-8