Nos tutelles



Accueil > Les équipes > Glycochimie Organique Biologique et Supramoléculaire (GOBS) > Thèmes de recherche


publié le , mis à jour le

  • Capturing the Monomeric (L)CuH & Cavity-Controlled Chemoselective Hydrosilylation of α,β-Unsaturated Ketones.
    Angew. Chem. Int. Ed., 2020, doi : 10.1002/anie.202001733

  • Chiral Nanoreactor for Enantio- and Substrate-Selective Alkoxycyclization Reactions
    ACS Catal., 2020, 10.1021/acscatal.0c00127

Confinement of Metal-N-Heterocyclic Carbene Complexes to control reactivity in catalytic reactions.
Chem. Eur. J., 2018, 12464-12473
Reviews Showcase

A bridge to assemble.
Angew. Chem. Int. Ed., 2018, 57, 7753–7758

Cavity switch.
Angew. Chem. Int. Ed., 2017, 56, 10821-10825

Artificial chiral metallo-pockets.
Chem, 2017, 3, 174-191

Mechanostereoselective one-pot synthesis of functionalized head-to-head cyclodextrin [3]rotaxanes and their application as Magnetic Resonance Imaging contrast agents
Org. Lett. 2017, 19, 1136–1139

Hexaphyrin-Cyclodextrin Hybrids : A Nest for Switchable Aromaticity, Asymmetric Confinement, and Isomorphic Fluxionality
Angew. Chem. Int. Ed. 2016, 55, 297-301

Protonated Hexaphyrin-Cyclodextrin Hybrids : Molecular Recognition Tuned by a Kinetic-to-Thermodynamic Topological Adaptation
Chem. Commun. 2016, 52, 9347-9350

Site-selective hexa-hetero-functionalization of alpha-cyclodextrin an archetypical C6-symmetric concave cycle
Nature Comms., 2014, 5, 5354

Cyclodextrin Polyrotaxanes as a highly modular platform for the development of imaging agents
Chem. Eur. J. 2014, 20, 10915-10920

Primary, Secondary and Tertiary Azido Interactions build-up solid-state hierarchical Cyclodextrin-Based Supramolecular Polymer
Angew. Chem. Int. Ed. 2014, 53, 7238-7242

Cyclodextrin-adamantane conjugates, self-inclusion and aggregation versus supramolecular polymer formation
Org. Chem. Frontiers 2014, 1, 703-706

Beta cyclodextrins bind, stabilize and remove lipofuscin bisretinoids from retinal pigment epithelium
Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1402-1408

Site-selective hetero-functionalization of Cyclodextrins, discovery, development and use for catalysis
Synlett 2013, 2629-2640

NHC-Capped Cyclodextrins (ICyDs) : Insulated Metal Complexes, Comutable Multicoordination Sphere and Cavity-Dependant Catalytisis,
Angew. Chem. Int. Ed. 2013, 52, 7213-7218

Diametrically opposed Carbenes on an α-Cyclodextrin : synthesis, characterization of organometallic complexes and Suzuki-Miyaura coupling in ethanol and in water, Eur. J. Org. Chem. 2013, DOI : 10.1002/ejoc.201300268

An “Against-the-Rules” Double Bank Shot with Diisobutylaluminium Hydride allows Triple Functionalisation of α-Cyclodextrin, Angew. Chem. Int. Ed. 2013, 52, 639-644

Cyclodextrin-Induced Auto-healing of Hybrid Polyoxometalates, Angew. Chem. Int. Ed., 2012, 51, 487-490– Hot Paper

Cyclodextrins selectively modified on both rims using an O-3-debenzylative post-functionalisation, a consequence of the Sorrento meeting, Carbohydr. Res. 2012, 356 278–281

Cavitand supported Tetraphosphine : Cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling, Chem. Commun., 2011, 47, 9206-9208 – Editor’s choice in ChemInform 2011, 42, issue 48

N-Heterocyclic Carbene Ligand based on a ß-cyclodextrin-Imidazolium Salt : Synthesis, Characterization of Organometallic Complexes and Suzuki Coupling, New J. Chem. 2011, 35, 2061–2065

Synthesis and Electrochemical Study of an Original Copper(II)-capped Salen-Cyclodextrin Complex, Eur. J. Inorg. Chem. 2010, 29, 4720–4727

Duplex of capped-cyclodextrins, synthesis and cross-linking behaviour with a biopolymer, Org. Biomol. Chem., 2010, 8, 3437-3443

Can hetero-polysubstituted cyclodextrins be considered as inherently chiral concave molecules ?
Angew. Chem. Int. Ed. 2010, 49, 2314-2318

Cyclodextrin tetraplexes : first syntheses and potential as cross-linking agent
Chem. Commun., 2010, 46, 2238–2240

Diisobutylaluminum hydride (DIBAL-H) promoted secondary rim regioselective demethylations of permethylated β-cyclodextrin : a mechanistic proposal
Eur. J. Org. Chem., 2010, 1510–1516

µ-Waves Avoid Large Excesses of Diisobutyl-aluminium-hydride (DIBAL-H) in the
Debenzylation of Perbenzylated α-Cyclodextrin

Tetrahedron Lett. 2010, 51, 1254-1256

Cap-induced synthesis of hetero-trifunctional cyclodextrins, from flamingo-cap to bascule-bridge
Eur. J. Org. Chem., 2009, 1295-1303

Surgical Regiospecific Tandem Azide-reduction/deprotection to afford versatile Amino alcohol-α- and β-Cyclodextrins
Angew. Chem. Int. Ed. 2008, 47, 7060-7063

Multiple homo and hetero-functionalisations of α-cyclodextrin through oriented deprotections
J. Org. Chem. 2008, 73, 2819-2828

Hydrophilic duplex cyclodextrin forming supramolecular assemblies by physical cross-linking of a biopolymer
Chem. Eur. J. 2007, 13, 8847 –8857

img19 Bascule-bridge or deoxy-sugars : two ways to tridifferentiate α- and β-cyclodextrins in a clockwise manner
Chem. Eur. J., 2007, 13, 9757-9774

Amphiphilic Bipolar Duplex α-Cyclodextrin Forming Vesicles
Tetrahedron, 2007, 63, 2973-2977

Sequential Ring Closing/Opening Metathesis for the Highly Selective Synthesis of a Triply Bifunctionalized α-Cyclodextrin
Chem. Commun., 2006, 1112-1114

Expeditious Selective Synthesis of Primary Rim Tri-differentiated α-Cyclodextrin
Tetrahedron Lett. 2006, 47, 4137-4139

Pd-catalysed Capping Removal on a Tri-differentiated α-Cyclodextrin
Chem. Lett., 2006, 35, 534-535

Diisobutylaluminium hydride (DIBAL-H) is promoting a selective clockwise debenzylation of perbenzylated 6A, 6D-dideoxy-α-Cyclodextrin
Tetrahedron Lett. 2005, 46, 7757-7760

The first chemical synthesis of a cyclodextrin heteroduplex
Chem. Biodiv., 2004, 1, 129-137

img20 Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels : the regioselective stripping of perbenzylated sugars and cyclodextrins
Chem. Eur. J., 2004, 10, 2960-2971