Supervisory authorities

CNRS

Search




Home > Research groups > Equipe de Recherche en Matériaux Moléculaires et Spectroscopies (ERMMES) > Publications

Publications

published on , updated on

2021



  • J. - R. Jiménez, B. Xu, H. E. Said, Y. Li, J. von Bardeleben, L. - M. Chamoreau, R. Lescouëzec, S. Shova, D. Visinescu, M. - G. Alexandru, J. Cano, and M. Julve, “Field-induced single ion magnet behaviour of discrete and one-dimensional complexes containing [bis(1-methylimidazol-2-yl)ketone]-cobalt(II) building units”, Dalton Transactions, vol. 50, no. 44, p. 16353-16363, Nov. 2021.
    Abstract: We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the β-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(μ-NC)2CoIII2(μ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the paramagnetic [CoII(Mebik)(H2O)(dmso)]2+ complex cations in a bis-monodentate fashion to afford neutral zigzag heterobimetallic chains in 3. Ab initio calculations, and cryomagnetic dc (2.0–300 K) and ac (2.0–12 K) measurements as well as EPR spectroscopy for 1–3 show the existence of magnetically isolated high-spin cobalt(II) ions with D values of 59.84–89.90 (1), 66.32–93.90 (2) and 70.40–127.20 cm−1 (3) and field-induced slow relaxation of the magnetization, being thus new examples of SIMs with transversal magnetic anisotropy. The analysis of their relaxation dynamics reveals that the relaxation of the magnetization occurs by the Raman (with values of the n parameter covering the range 6.0–6.8) and direct spin-phonon processes.
    Tags: ERMMES, POLE 2.


  • A. Li, L. - M. Chamoreau, B. Baptiste, Y. Li, Y. Journaux, and L. Lisnard, “Solvothermal synthesis, structure and magnetic properties of heterometallic coordination polymers based on a phenolato-oxamato co-bidentate-tridentate ligand”, Dalton Transactions, vol. 50, no. 2, p. 681-688, Jan. 2021.
    Abstract: The use of solvothermal conditions has succesfully led to the preparation of heterometallic 1D coordination polymers from a co-bidentate-tridentate phenolato-oxamato ligand. The reaction of the N-(2-hydoxyphenyl)oxamic acid (ohpma) with acetate salts of transition metal ions at 80 °C has yielded the heterobimetallic [Cu(ohpma)M(OAc)(DMF)2] (M = Co (1); Mn (2)) and the heterotrimetallic [Cu(ohpma)Co0.57Mn0.43(OAc)(DMF)2] (3) chain compounds. Single-crystal and powder diffraction studies show that the polymers are isostructural. Magnetic studies suggest the existence of an inter-chain two-dimensional antiferromagnetic interaction taking place in compounds 1–3.
    Tags: ERMMES, POLE 2.

2020



  • A. Benchohra, C. Méthivier, J. Landoulsi, D. Kreher, and R. Lescouëzec, “Electrospray ionization: an efficient approach to deposit polymetallic molecular switches onto gold surfaces”, Chemical Communications, vol. 56, no. 48, p. 6587-6589, 2020.
    Abstract: Electrospray ionization (EI) deposition is proven efficient in obtaining monolayers of a polymetallic charge transfer complex on gold surfaces. , Electrospray ionization (EI) deposition is proven efficient in obtaining monolayers of a polymetallic charge transfer complex on gold surfaces. The molecule's integrity is monitored by using PM-IRRAS and XPS. This approach broadens the perspective of molecular magnetic switch deposition, which is currently dominated by the thermal evaporation of monometallic spin crossover (SCO) complexes.
    Tags: ERMMES, POLE 2.


  • J. ‐R. Jiménez, J. Glatz, A. Benchohra, G. Gontard, L. ‐M. Chamoreau, J. ‐F. Meunier, A. Bousseksou, and R. Lescouëzec, “Electron Transfer in the Cs⊂{Mn <sub>4</sub> Fe <sub>4</sub> } Cubic Switch: A Soluble Molecular Model of the MnFe Prussian‐Blue Analogues”, Angewandte Chemie International Edition, vol. 59, no. 21, p. 8089-8093, May 2020.

2019



  • S. De, A. Flambard, D. Garnier, P. Herson, F. H. Köhler, A. Mondal, K. Costuas, B. Gillon, R. Lescouëzec, B. Le Guennic, and F. Gendron, “Probing the Local Magnetic Structure of the [FeIII(Tp)(CN)3]− Building Block Via Solid-State NMR Spectroscopy, Polarized Neutron Diffraction, and First-Principle Calculations”, Chemistry – A European Journal, vol. 25, no. 52, p. 12120-12136, 2019.
    Abstract: Abstract The local magnetic structure in the [FeIII(Tp)(CN)3]− building block was investigated by combining paramagnetic Nuclear Magnetic Resonance (pNMR) spectroscopy and polarized neutron diffraction (PND) with first-principle calculations. The use of the pNMR and PND experimental techniques revealed the extension of spin-density from the metal to the ligands, as well as the different spin mechanisms that take place in the cyanido ligands: Spin-polarization on the carbon atoms and spin-delocalization on the nitrogen atoms. The results of our combined density functional theory (DFT) and multireference calculations were found in good agreement with the PND results and the experimental NMR chemical shifts. Moreover, the ab-initio calculations allowed us to connect the experimental spin-density map characterized by PND and the suggested distribution of the spin-density on the ligands observed by NMR spectroscopy. Interestingly, significant differences were observed between the pseudo-contact contributions of the chemical shifts obtained by theoretical calculations and the values derived from NMR spectroscopy using a simple point-dipole model. These discrepancies underline the limitation of the point-dipole model and the need for more elaborate approaches to break down the experimental pNMR chemical shifts into contact and pseudo-contact contributions.
    Tags: ERMMES, POLE 2.


  • M. Okubo, J. Long, D. R. Talham, and R. Lescouëzec, “Solid-state electrochemistry of metal cyanides”, Comptes Rendus Chimie, vol. 22, no. 6, p. 483 - 489, 2019.
    Abstract: Efficient energy storage in the form of batteries contributes to building sustainable society. As advanced batteries need positive electrode materials capable of larger capacity, higher voltage, and lower cost, it is important to search for novel electrode materials. Among various inorganic/organic materials, cyanido-bridged coordination compounds are promising candidates for battery electrodes due to their ability to undergo solid-state redox reaction associated with ion (de)intercalation. In this review, recent results about the thermodynamic and kinetic aspects of the solid-state electrochemistry of cyanido-bridged coordination compounds are summarized, providing a fundamental basis toward developing cyanide electrodes for advanced batteries. Résumé Le stockage de l’énergie dans des batteries performantes est un élément clé pour le développement des énergies renouvelables et d'un modèle de société durable. Un des défis pour construire de nouvelles batteries plus performantes est le développement de matériaux d'intercalation pour cathode présentant de plus grandes capacités, de plus grands voltages et des coûts réduits. Parmi les divers matériaux organiques et inorganiques explorés, les polymères de coordination à pont cyanure sont des candidats prometteurs. Ceux ci peuvent s'oxyder et se réduire à l’état solide en (dés)intercalant des ions. Dans cette revue, quelques résultats récents sur les aspects thermodynamiques et cinétiques des propriétés électrochimiques des polymères de coordination à pont cyanure sont résumés, démontrant leur potentiel intérêt comme életcrodes dans de nouvelles batteries.
    Tags: ERMMES, POLE 2.
--- Export the selection using the format