Nos tutelles



Accueil > Publications


publié le , mis à jour le


  • X. Callies, E. Ressouche, C. Fonteneau, G. Ducouret, S. Pensec, L. Bouteiller, et C. Creton, « Effect of the Strength of Stickers on Rheology and Adhesion of Supramolecular Center-Functionalized Polyisobutenes », Langmuir, vol. 34, nᵒ 42, p. 12625-12634, oct. 2018.
    Résumé : In order to systematically investigate the effect of the strength of the supramolecular interactions on the debonding properties of associative polymers, a series of model systems have been characterized by probe-tack tests. These model materials, composed of linear and low dispersity poly(isobutylene) chains (Mn ≈ 3 kg/mol) center-functionalized by a single bis-urea sticker, are able to self-assemble by four hydrogen bonds. Three types of stickers are used in the present study: a bis-urea with a methylene diphenyl (MDI) spacer, a bis-urea with a tolyl (TOL) spacer, and a bis-urea with a xylyl (XYL) spacer. In order to investigate the influence of stickers in depth, both the nanostructure of the materials and the linear rheology were investigated by small-angle X-ray scattering (SAXS) and oscillatory shear, respectively. For two types of stickers (TOL and XYL), the association of polymers via hydrogen bonds induces the formation of bundles of rodlike aggregates at room temperature and the behavior of a soft elastic material was observed. For bis-urea MDI, no structure is detected by SAXS and a Newtonian behavior is observed at room temperature. In probe-tack experiments, all these materials show a cohesive mode of failure, a signature of flowing materials as previously observed for tri-urea center-functionalized poly(butylacrylate) (PnBA3U). However, XYL center-functionalized polyisobutene shows much higher debonding energies than PnBA3U, revealing the importance of the strength of noncovalent bonds in the scission/recombination dynamics. On the basis of the analysis of the debonding images, this effect is discussed via the mechanical behavior at large deformation.
    Mots-clés : POLE 4, POLYMERES.

  • N. Chahin, L. A. Uribe, A. M. Debela, S. Thorimbert, B. Hasenknopf, M. Ortiz, I. Katakis, et C. K. O'Sullivan, « Electrochemical primer extension based on polyoxometalate electroactive labels for multiplexed detection of single nucleotide polymorphisms », Biosensors and Bioelectronics, vol. 117, p. 201-206, 2018.
    Résumé : Polyoxymetalates (POMs) ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-), and [SiW11O39{Sn(CH2)2CO)}]4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis.
    Mots-clés : CHEMBIO, Electrochemical primer extension reaction (éPEX), GOBS, Multiplexed electrochemical detection, POLE 3, Polyoxometalate-labelled ddNTPs, SNP detection.

  • L. Chang, N. Klipfel, L. Dechoux, et S. Thorimbert, « A solvent-free, base-catalyzed domino reaction towards trifluoromethylated benzenes from bio-based methyl coumalate », Green Chemistry, vol. 20, nᵒ 7, p. 1491-1498, 2018.
    Résumé : A novel, efficient, and environmentally compatible method for CF3-substituted benzene production is reported. It sources a bio-based feedstock, employs tBuOK as a catalyst, and is solvent-free. This regioselective approach provides various trifluoromethyl benzenes in good to excellent yields, without any extra oxidant or special care. CO2 and water are the only byproducts of this process, and the reaction conditions can scale up to gram quantities. The transformation involves an unprecedented tBuOK-catalyzed domino process, and features Michael addition/6[small pi]-electrocyclic ring opening/[1,5]-H shift/carba-6[small pi]-electrocyclic ring closure/decarboxylative aromatization reactions.
    Mots-clés : CHEMBIO, POLE 3.

  • M. V. Cherrier, P. Amara, B. Talbi, M. Salmain, et J. C. Fontecilla-Camps, « Crystallographic evidence for unexpected selective tyrosine hydroxylations in an aerated achiral Ru–papain conjugate », Metallomics, vol. 10, nᵒ 10, p. 1452-1459, 2018.
    Résumé : The X-ray structure of an aerated achiral Ru–papain conjugate has revealed the hydroxylation of two tyrosine residues found near the ruthenium ion. The most likely mechanism involves a ruthenium-bound superoxide as the reactive species responsible for the first hydroxylation and the resulting high valent Ru(iv)O species for the second one.
    Mots-clés : CHEMBIO, POLE 3.

  • T. F. C. Cruz, C. A. Figueira, J. C. Waerenborgh, L. C. J. Pereira, Y. Li, R. Lescouëzec, et P. T. Gomes, « Synthesis, characterization and magnetism of homoleptic bis(5-aryl-2-iminopyrrolyl) complexes of iron(II) and cobalt(II) », Polyhedron, vol. 152, p. 179-187, 2018.

  • de Jesús Cázares-Marinero José, Przybylski Cédric, et Salmain Michèle, « Proteins as Macromolecular Ligands for Metal-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Aqueous Medium », European Journal of Inorganic Chemistry, vol. 2018, nᵒ 12, p. 1383-1393, 2018.
    Résumé : Biohybrid catalysts resulting from the dative anchoring of half-sandwich organometallic complexes [M(arene)(H2O)x(Cl)y]n+ (M = RuII, arene = ?6-benzene, p-cymene or mesitylene; M = IrIII, RhIII, arene = ?5-Cp*; x = 1?3, y = 0?2, n = 0?2) to bovine beta-lactoglobulin (?LG) or hen egg white lysozyme showed unprecedented behaviour. These constructs were shown to catalyse the asymmetric transfer hydrogenation of aryl ketones in water with sodium formate as hydrogen donor at a much faster rate than the complexes alone. Full conversion of the benchmark substrate 2,2,2-trifluoroacetophenone was reached with an ee of 86?% for the most selective biohybrid. Surprisingly, even the crude biohybrid gave a good ee despite the presence of non-protein-bound metal species in the reaction medium. Other aryl ketones were reduced in the same way, and the highest ee was obtained for ortho-substituted acetophenone derivatives. Furthermore, treatment of ?LG with dimethyl pyrocarbonate resulted in a noticeable decrease of the activity and selectivity of the biohybrid, indicating that the sole accessible histidine residue (His146) was probably involved in the coordination and activation of Ru(benzene). This work underscores that protein scaffolds are efficient chiral ligands for asymmetric catalysis. The use of sodium formate instead of dihydrogen makes this approach safe, inexpensive and environmentally friendly.
    Mots-clés : Artificial metalloenzymes, Asymmetric catalysis, CHEMBIO, CSOB, Hydrogenation, Mass spectrometry, POLE 3, Ruthenium.
    Note Note
    <p>doi: 10.1002/ejic.201701359</p>

  • K. de la Vega-Hernández, E. Romain, A. Coffinet, K. Bijouard, G. Gontard, F. Chemla, F. Ferreira, O. Jackowski, et A. Perez-Luna, « Radical Germylzincation of α-Heteroatom-Substituted Alkynes », Journal of the American Chemical Society, vol. 140, nᵒ 50, p. 17632-17642, déc. 2018.
    Résumé : The regio- and stereoselective addition of germanium and zinc across the C–C triple bond of nitrogen-, sulfur-, oxygen-, and phosphorus-substituted terminal and internal alkynes is achieved by reaction with a combination of R3GeH and Et2Zn. Diagnostic experiments support a radical-chain mechanism and the β-zincated vinylgermanes that show exceptional stability are characterized by NMR spectroscopy and X-ray crystallography. The unique feature of this new radical germylzincation reaction is that the C(sp2)–Zn bond formed remains available for subsequent in situ Cu(I)- or Pd(0)-mediated C–C or C–heteroatom bond formation with retention of the double bond geometry. These protocols offer modular access to elaborated tri- and tetrasubstituted vinylgermanes decorated with heteroatom substituents β to germanium that are useful for the preparation of stereodefined alkenes.
    Mots-clés : POLE 1, ROCS.

  • S. De, L. - M. Chamoreau, H. El Said, Y. Li, A. Flambard, M. - L. Boillot, S. Tewary, G. Rajaraman, et R. Lescouëzec, « Thermally-Induced Spin Crossover and LIESST Effect in the Neutral [FeII(Mebik)2(NCX)2] Complexes: Variable-Temperature Structural, Magnetic, and Optical Studies (X = S, Se; Mebik = bis(1-methylimidazol-2-yl)ketone) », Frontiers in Chemistry, vol. 6, août 2018.

  • S. De, S. Tewary, D. Garnier, Y. Li, G. Gontard, L. Lisnard, A. Flambard, F. Breher, M. - L. Boillot, G. Rajaraman, et R. Lescouëzec, « Solution and Solid-State Study of the Spin-Crossover [FeII(R-bik)3](BF4)2 Complexes (R = Me, Et, Vinyl) », European Journal of Inorganic Chemistry, vol. 2018, nᵒ 3-4, p. 414-428, janv. 2018.
    Résumé : The magnetic properties of three spin-crossover complexes, [FeII(R-bik)3](BF4)2·nH2O (1–3), based on bis(imidazolyl)ketone ligands, were investigated in solution and the solid state. Their properties were compared with those of the ketone-free analogue, [FeII(bim)3](OTf)2 (4). The alkyl and vinyl R groups have weak influence on the transition temperature, T1/2, in solution, while stronger differences are observed in the solid state, because different intermolecular interactions occur in 1–3. The spin-state equilibria in solution were followed by SQUID magnetometry and the Evans NMR spectroscopy method. Interestingly, the equilibria can also be simply and efficiently probed by following the temperature dependence of an adequately chosen 1H chemical shift. Overall, these experiments give coherent results, with T1/2 located between 320 and 335 K, a narrow range, in comparison with the solid state. DFT calculations have allowed the rationalization of the magnetic differences. The molecular-orbital and spin-density calculations reveal that the presence of the C=O group between the imidazolyl units in the ligands of 1–3 leads to an extended aromatic system, an effective π-acceptor effect, stabilizing the LS state and reducing the LS–HS gap, in comparison with 4.
    Mots-clés : Density functional calculations, ERMMES, Iron, Paramagnetic NMR spectroscopy, POLE 2, Spin crossover.
    Pièce jointe Full Text PDF 3.1 Mo (source)

  • S. Dhifaoui, C. Mchiri, P. Quatremare, V. Marvaud, A. Bujacz, et H. Nasri, « Molecular structure, magnetic properties, cyclic voltammetry of the low-spin iron(III) Bis(4-ethylaniline) complex with the para-chloro substituted meso-tetraphenylporphyrin », Journal of Molecular Structure, vol. 1153, p. 353-359, févr. 2018.
    Résumé : In this study, the preparation of a new iron(III) hexacoordinated metalloporphyrin namely the bis(4-ethylaniline){meso-tetra(para-chlorophenyl)porphyrinato}iron(III) triflate hemi-4-ethylaniline monohydrate with the formula [FeIII(TClPP)(PhEtNH2)2]SO3CF3•1/2PhEtNH2•H2O (I) was reported. This is the first example of an iron(III) metalloporphyrin bis(primary amine) with an aryl group adjacent to the amino group. This species was characterized by elemental, spectroscopic analysis including UV–visible and IR data, cyclic voltammetry, SQUID measurements and X-ray molecular structure. The mean equatorial distance between the iron(III) and the nitrogens of the porphyrin is appropriate for a low-spin (S = 1/2) iron(III) porphyrin complex. The magnetic data confirm the low-spin state of our ferric derivative while the cyclic voltammetry indicates a shift of the half potential E1/2[Fe(III)/Fe(II)] of complex (I) toward more negative value. In the crystal of (I), the [FeIII(TClPP)(PhEtNH2)2]+ ions, the triflate counterions and the water molecules are involved in a number of O__H⋯O, N__H⋯O, C–H⋯O and C__H⋯π intermolecular interactions forming a three-dimension network.
    Mots-clés : E-POM, Iron(III) porphyrins, Magnetic data, POLE 2, UV–Visible, X-ray molecular structure.

  • S. Dhifaoui, S. Nasri, G. Gontard, A. C. Ghosh, Y. Garcia, C. Bonifàcio, S. Najmudin, V. Marvaud, et H. Nasri, « Synthesis, Mössbauer, cyclic voltammetry, magnetic properties and molecular structures of the low-spin iron(III) bis(pyrazine) complexes with the para-fluoro and para-chloro substituted meso-tetraphenylporphyrin », Inorganica Chimica Acta, vol. 477, p. 114-121, mai 2018.
    Résumé : Two new bis(pyrazine) iron(III) meso-porphyrin complexes are reported here: the bis(pyrazine)[5,10,15,20-tetra(para-fluoro-phenyl)porphyrinato]iron(III) triflate; [Fe(TFPP)(pyz)2]SO3CF3 (1) and the bis(pyrazine)[5,10,15,20-tetra(para-chlorophenyl)porphyrinato]iron(III) triflate; [Fe(TClPP)(pyz)2]SO3CF3 (2). The X-ray molecular structures of 1–2 show that the planes of the two pyrazine axial ligands are perpendicular and that the porphyrin macrocycles of these derivatives are very distorted, leading to a short average equatorial iron-pyrrole N atoms distance appropriate for low-spin ferric porphyrinates. The Mössbauer data of 1–2 feature relatively low values of the quadrupole splitting (ΔEQ ∼ 1.20 mm.s−1) appropriate for low-spin Fe(III) metalloporphyrin with perpendicular orientation of N-donor planar ligands. The temperature dependence of the magnetic susceptibility and the magnetization curves have shown that the results for complexes 1–2 confirm the low-spin state of our two-ferric species, while the cyclic voltammetry data show that the half potential [Fe(III)/Fe(II)] values are shifted anodically compared to the β-pyrrole substituted porphyrin octaethylporphyrin with parallel bis(N-donor) planar axial ligands.
    Mots-clés : E-POM, Iron(III) porphyrins, Magnetic properties, Mössbauer, POLE 2, UV-visible, X-ray molecular structure.

  • F. Ding, Y. Gao, X. He, et Y. Zhang, « Theranostic Applications of Antibody-Based Systems in Human Diseases », Journal of Biomedical Nanotechnology, vol. 14, nᵒ 3, p. 405-429, mars 2018.

  • F. Ding et Y. Zhang, « Biomedical Applications of Glycoconjugates », Mini-Reviews in Medicinal Chemistry, vol. 18, nᵒ 18, p. 1508-1523, oct. 2018.

  • B. Doistau, L. Benda, B. Hasenknopf, V. Marvaud, et G. Vives, « Switching Magnetic Properties by a Mechanical Motion », Magnetochemistry, vol. 4, nᵒ 1, p. 5, mars 2018.
    Résumé : Switching magnetic properties have attracted a wide interest from inorganic chemist for the objectives of information storage and quantum computing at the molecular level. This review is focused on magnetic switches based on a mechanical motion, which is an innovative approach. Three main strategies to control magnetic properties by a mechanical motion have been developed in the literature and will be described. The first one (ligand-induced spin change) consists in modulating the ligand field strength by a configuration change of the ligand in spin-crossover complexes. The second one (coordination-induced spin-state switching) is based on a change in the coordination number of a metallic center that is triggered by the motion of one ligand. The third one uses the modulation of the exchange interaction between two spin-centers by a mechanical motion.
    Mots-clés : E-POM, GOBS, LD-CISSS, LD-LISC, magnetism, molecular machine, molecular switch, photoisomerization, POLE 2, POLE 3, spin crossover.
    Pièce jointe Full Text PDF 3.4 Mo (source)

  • S. Douix, H. Dossmann, E. Nicol, D. Duflot, et A. Giuliani, « Spectroscopy and Photodissociation of the Perfluorooctanoate Anion », Chemistry - A European Journal, sept. 2018.

  • M. Dréan, A. Debuigne, C. Jérôme, C. Goncalves, P. Midoux, J. Rieger, et P. Guégan, « Poly(N-methylvinylamine)-Based Copolymers for Improved Gene Transfection », Macromolecular Bioscience, vol. 18, nᵒ 4, p. 1700353, avr. 2018.
    Résumé : Poly(N-methylvinylamines) with secondary amines can form complexes with plasmid DNA (pDNA) and provide transfection efficiency in HeLa cells in the same order as linear polyethyleneimine but with higher cell viability. Chemical modifications of poly(N-methylvinylamine) backbones are performed to further improve transfection efficiency while maintaining low degree of cytotoxicity. In a first type of polymer, primary amino groups are incorporated via a copolymerization strategy. In a second one, primary amino and imidazole groups are incorporated also via a copolymerization strategy. In a third one, secondary amino groups are substituted with methylguanidine functions through a postpolymerization reaction. Thus, novel polymers of various molecular masses are synthesized, characterized, and their interaction with pDNA studied. Then, thei

    r transfection efficiency and cytotoxicity are tested in HeLa cells. Two polymethylvinylamine-based copolymers, one containing 20% of imidazole moieties and another one composed of 12% of guanidinyl units allow remarkable transfection efficiency of HeLa, pulmonary (16HBE), skeletal muscle (C2C12), and dendritic (DC2.4) cells. Overall, this work thus identifies new promising DNA carriers and chemical modifications that improve the transfection efficiency while maintaining low degree of cytotoxicity.
    Mots-clés : gene delivery, nanoparticles, POLE 4, POLYMERES, polyvinylamine.
    Pièce jointe Full Text PDF 3.2 Mo (source)

  • B. Ebeling, K. Belal, F. Stoffelbach, P. Woisel, M. Lansalot, et F. D'Agosto, « Polymer Nanospheres with Hydrophobic Surface Groups as Supramolecular Building Blocks Produced by Aqueous PISA », Macromolecular Rapid Communications, p. 1800455, 2018.
    Résumé : A robust and straightforward synthesis of waterborne polymer nanospheres bearing the supramolecular association unit dialkoxynapthalene at their surface is presented using polymerization-induced self-assembly (PISA). A RAFT agent bearing this unit is first employed to produce poly(acrylic acid) chains, which are then chain-extended with styrene (S) to spontaneously form the nano-objects via RAFT aqueous emulsion polymerization. The particular challenge posed by the dialkoxynapthalene hydrophobicity can be overcome by the use of PISA and the deprotonation of the poly(acrylic acid). At pH = 7, very homogeneous latexes are obtained. The particle diameters can be tuned from 36 to 105 nm (with a narrow particle size distribution) by varying the molar mass of the PS block. The surface accessibility of the dialkoxynapthalene moieties is demonstrated by complexation with the complementary host cyclobis(paraquat-p-phenylene) (CBPQT4+ · Cl−), highlighting the potential of the nanospheres to act as building blocks for responsive supramolecular structures.
    Mots-clés : emulsion polymerization, POLE 4, polymer nanoparticles, POLYMERES, polymerization-induced self-assembly, RAFT polymerization, supramolecular assembly.

  • J. Elloumi-Mseddi, S. Mnif, N. Akacha, B. Hakim, P. Pigeon, G. Jaouen, S. Top, et S. Aifa, « Selective cytotoxicity of arene tricarbonylchromium towards tumour cell lines », Journal of Organometallic Chemistry, vol. 862, p. 7-12, 2018.
    Mots-clés : 50% inhibitory concentration, CHEMBIO, Cytotoxicity, Inorganic chromium (VI), Organometallics, POLE 3, Tricarbonylchromium, Tumour cell lines.

  • Z. Eskandani, T. Le Gall, T. Montier, P. Lehn, F. Montel, L. Auvray, C. Huin, et P. Guégan, « Polynucleotide transport through lipid membrane in the presence of starburst cyclodextrin-based poly(ethylene glycol)s », The European Physical Journal E, vol. 41, nᵒ 11, p. 132, nov. 2018.
    Résumé : .Symmetrical cyclodextrin-based 14-arm star polymers with poly(ethylene glycol) PEG branches were synthesized and characterized. Interactions of the star polymers with lipid bilayers were studied by the “black lipid membrane” technique in order to demonstrate the formation of monomolecular artificial channels. The conditions for the insertion are mainly based on dimensions and amphiphilic properties of the star polymers, in particular the molar mass of the water-soluble polymer branches. Translocation of single-strand DNA (ssDNA) through those synthetic nanopores was investigated, and the close dimension between the cross-section of ssDNA and the cyclodextrin cavity led to an energy barrier that slowed down the translocation process.Graphical abstract Open image in new window
    Mots-clés : POLE 4, POLYMERES, Polymers: From Adsorption to Translocation - Topical Issue in Memoriam Loïc Auvray (1956-2016).

  • P. Evenou, J. Rossignol, G. Pembouong, A. Gothland, D. Colesnic, R. Barbeyron, S. Rudiuk, A. - G. Marcelin, M. Ménand, D. Baigl, V. Calvez, L. Bouteiller, et M. Sollogoub, « Bridging beta-Cyclodextrin prevents self-inclusion and allows formation of supramolecular polymers: self-assembly and cooperative interaction with nucleic acids », Angewandte Chemie International Edition, avr. 2018.
    Mots-clés : cyclodextrin, GOBS, inclusion complexes, nucleic acids, POLE 3, POLE 4, POLYMERES, supramolecular polymers.
    Pièce jointe Full Text PDF 3.2 Mo (source)

  • I. Faye, C. Huin, N. Illy, V. Bennevault, et P. Guégan, « β-Cyclodextrin-Based Star Amphiphilic Copolymers: Synthesis, Characterization, and Evaluation as Artificial Channels », Macromolecular Chemistry and Physics, p. 1800308, oct. 2018.
    Résumé : Abstract 14-arm amphiphilic star copolymers are synthesized according to different strategies. First, the anionic ring polymerization of 1,2-butylene oxide (BO) initiated by per(2-O-methyl-3,6-di-O-(3-hydroxypropyl))-?-CD (?-CD?OH14) and catalyzed by t-BuP4 in DMF is investigated. Analyses by NMR and SEC show the well-defined structure of the star ?-CD?-PBO14. To obtain a 14-arm poly(butylene oxide-b-ethylene oxide) star, a Huisgen cycloaddition between an α-methoxy-?-azidopoly(ethylene oxide) and the ?-CD?-PBO14,whose end-chains are beforehand alkyne-functionalized, is performed. In parallel, 14-arm star copolymers composed of butylene oxide-b-glycidol arms are successfully synthesized by the anionic polymerization of ethoxyethylglycidyl ether (EEGE) initiated by ?-CD?-PBO14 with t-BuP4. The deprotection of EEGE units is then performed to provide the polyglycidol blocks. These amphiphilic star polymers are evaluated as artificial channels in lipid bilayers. The effect of changing a PEO block by a polyglycidol block on the insertion properties of these artificial channels is discussed.
    Mots-clés : amphiphilic star copolymers, anionic polymerization, artificial channels, phosphazene base, POLE 4, POLYMERES, β-cyclodextrin.
    Pièce jointe Full Text PDF 4.4 Mo (source)

  • L. Fensterbank, S. Gao, et A. Zakarian, « Themed collection: Synthetic approaches to natural products via catalytic processes », Organic Chemistry Frontiers, vol. 5, nᵒ 4, p. 529-530, févr. 2018.
    Résumé : A graphical abstract is available for this content
    Mots-clés : MACO, POLE 1.
    Pièce jointe Full Text PDF 481 ko (source)

  • L. Fensterbank, J. - P. Goddard, et C. Ollivier, « Visible-Light-Mediated Free Radical Synthesis », in Visible Light Photocatalysis in Organic Chemistry, Wiley-Blackwell, 2018, p. 25-71.
    Résumé : This chapter concentrates on the photocatalytic generation of radical intermediates that have already been encountered in the past and generated through other pathways. It particularly emphasizes how photocatalysis can really improve the reaction conditions and outcomes. Different oxygenated moieties can be introduced by photocatalysis in place of an initial C—H bond. The development of visible-light photoredox catalysis for radical synthesis has demonstrated high efficiency, selectivity, versatility, and functional group tolerance in various transformations, becoming of great interest in cascade processes intramolecular radical steps. One of the most developed cascade sequence is tandem intermolecular radical addition/homolytic aromatic substitution, which first comprises radical addition onto activated double bond followed by cyclization onto arene and rearomatization by subsequent oxidation of the radical adduct. Radical multicomponent processes have emerged as a convenient and flexible strategy to elaborate complex molecular building blocks. Among them, visible-light photoredox catalysis proved to be efficient for promoting radical/cationic multicomponent reactions (MCRS).
    Mots-clés : cationic multicomponent reaction, C—C bond formation, C—X bond formation, MACO, photocatalytic cycle, POLE 1, radical cascade applications, radical intermediates, radical multicomponent reaction, visible-light-mediated free radical synthesis.

  • F. Forato, A. Belhboub, J. Monot, M. Petit, R. Benoit, V. Sarou‐Kanian, F. Fayon, D. Jacquemin, C. Queffelec, et B. Bujoli, « Phosphonate-Mediated Immobilization of Rhodium/Bipyridine Hydrogenation Catalysts », Chemistry – A European Journal, vol. 24, nᵒ 10, p. 2457-2465, févr. 2018.
    Résumé : RhL2 complexes of phosphonate-derivatized 2,2′-bipyridine (bpy) ligands L were immobilized on titanium oxide particles generated in situ. Depending on the structure of the bipy ligand—number of tethers (1 or 2) to which the phosphonate end groups are attached and their location on the 2,2′-bipyridine backbone (4,4′-, 5,5′-, or 6,6′-positions)—the resulting supported catalysts showed comparable chemoselectivity but different kinetics for the hydrogenation of 6-methyl-5-hepten-2-one under hydrogen pressure. Characterization of the six supported catalysts suggested that the intrinsic geometry of each of the phosphonate-derivatized 2,2′-bipyridines leads to supported catalysts with different microstructures and different arrangements of the RhL2 species at the surface of the solid, which thereby affect their reactivity.
    Mots-clés : hydrogenation, immobilization, MACO, N ligands, POLE 1, rhodium, supported catalysts.
    Pièce jointe Full Text PDF 1.1 Mo (source)

  • F. Fus, Y. Yang, H. Z. S. Lee, S. Top, M. Carriere, A. Bouron, A. Pacureanu, J. C. da Silva, M. Salmain, A. Vessieres, P. Cloetens, G. Jaouen, et S. Bohic, « Synchrotron Radiation X-Ray Fluorescence Nanoimaging Reveal the Intracellular Localization of Potent Anticancer Drug Osmocenyl-Tamoxifen Derivative », Microscopy and Microanalysis, vol. 24, nᵒ S2, p. 348-349, 2018.

  • G. Gaiffe, M. C. Bridoux, C. Costanza, et R. B. Cole, « A systematic tandem mass spectrometric study of anion attachment for improved detection and acidity evaluation of nitrogen-rich energetic compounds », Journal of Mass Spectrometry, vol. 53, nᵒ 1, p. 21-29, 2018.

  • G. Gaiffe, R. B. Cole, S. Lacpatia, et M. C. Bridoux, « Characterization of Fluorinated Polymers by Atmospheric-Solid-Analysis-Probe High-Resolution Mass Spectrometry (ASAP/HRMS) Combined with Kendrick-Mass-Defect Analysis », Analytical Chemistry, vol. 90, nᵒ 10, p. 6035-6042, mai 2018.

  • D. Gatineau, D. Lesage, H. Clavier, H. Dossmann, C. H. Chan, A. Milet, A. Memboeuf, R. B. Cole, et Y. Gimbert, « Bond dissociation energies of carbonyl gold complexes: a new descriptor of ligand effects in gold( <span style="font-variant:small-caps;">i</span> ) complexes? », Dalton Transactions, vol. 47, nᵒ 43, p. 15497-15505, 2018.

  • A. Gosset, Z. Xu, F. Maurel, L. - M. Chamoreau, S. Nowak, G. Vives, C. Perruchot, V. Heitz, et H. - P. Jacquot de Rouville, « A chemically-responsive bis-acridinium receptor », New Journal of Chemistry, vol. 42, nᵒ 6, p. 4728-4734, 2018.

  • B. Habchi, S. Alves, D. Jouan-Rimbaud Bouveresse, B. Appenzeller, A. Paris, D. N. Rutledge, et E. Rathahao-Paris, « Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality », Analytical and Bioanalytical Chemistry, vol. 410, nᵒ 2, p. 483-490, 2018.

  • B. Habchi, A. Kassouf, Y. Padellec, E. Rathahao-Paris, S. Alves, D. N. Rutledge, J. Maalouly, et V. Ducruet, « An untargeted evaluation of food contact materials by flow injection analysis-mass spectrometry (FIA-MS) combined with independent components analysis (ICA) », Analytica Chimica Acta, 2018.

  • S. Han, E. Nicol, F. Niepceron, O. Colombani, S. Pensec, et L. Bouteiller, « Oligo-Urea with No Alkylene Unit Self-Assembles into Rod-Like Objects in Water », Macromolecular Rapid Communications, p. 1800698, 2018.
    Résumé : Long and rigid objects formed by self-assembly in water are useful as templates or for their rheological or biological properties. They are usually obtained by combining hydrogen bonding and strong hydrophobic interactions brought by an alkyl or alkylene chain. A simple access to well-defined rod-like assemblies in water is reported based on a penta-urea sticker directly connected to poly(ethylene oxide) side chains. These assemblies are characterized by an average length of several hundreds of nanometers and a monodisperse radius (4.5 nm) resulting from a reduced lateral aggregation of the stickers.
    Mots-clés : hydrogen bonds, light scattering, POLE 4, POLYMERES, rod-like nanoparticles, self-assembly.

  • S. Hupin, H. Lavanant, S. Renaudineau, A. Proust, G. Izzet, M. Groessl, et C. Afonso, « A calibration framework for the determination of accurate collision cross sections of polyanions using polyoxometalate standards », Rapid Communications in Mass Spectrometry, vol. 32, nᵒ 19, p. 1703-1710, 2018.
    Résumé : Rationale Polyoxometalates (POMs) are remarkable oxo-clusters forming compact highly charged anions. We measured their collision cross sections (CCS) in N2 with drift tube ion mobility spectrometry (DTIMS). These values were then used to calibrate a traveling wave ion mobility spectrometry (TWIMS) device and the accuracy of the calibration was tested. Methods Six POM standards were analyzed by DTIM-MS (Tofwerk, Thun, Switzerland) at different voltages to determine absolute DTCCS (N2) values. Five POM compounds (Lindqvist TBA2Mo6O19; decatungstate TBA4W10O32; Keggin TBA3PMo12O40; TBA3PW12O40 and Dawson TBA6P2W18O62) were used for the calibration of the TWIM-MS instrument (Synapt G2 HDMS, Waters, Manchester, UK) and a sixth Dawson POM, TBA9P2Nb3W15O62, was used to compare the accuracy of the calibrations with POM or with polyalanine and dextran reference ions. Results We determined 45 DTCCS (N2) values at 30°C or 60°C. Fourteen DTCCS (N2) values at 30°C were used to perform calibration of the TWIMS instrument. Better correlations were observed than when DTCCS values in helium from the literature w

    ere used. The accuracy tests on six ions of Dawson POM TBA9P2Nb3W15O62 led to relative errors below 3.1% while relative errors of 3.6% to 10.1% were observed when calibration was performed with polyalanine and dextran reference ions. Conclusions Our novel calibration strategy for determination of CCS values of multiply negatively charged ions on TWIM-MS devices based on DTCCS (N2) of standard POM structures covered a wider range of CCS and improved the accuracy to 2.1% relative error on average compared with 6.9% using polyalanine and dextran calibration.
    Mots-clés : E-POM.
    Pièce jointe Full Text PDF 579.9 ko (source)

  • A. Jagtap, N. Goubet, C. Livache, A. Chu, B. Martinez, C. Gréboval, J. Qu, E. Dandeu, L. Becerra, N. Witkowski, S. Ithurria, F. Mathevet, M. G. Silly, B. Dubertret, et E. Lhuillier, « Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances », The Journal of Physical Chemistry C, vol. 122, nᵒ 26, p. 14979-14985, juill. 2018.
    Résumé : Colloidal quantum dots (CQDs) are candidates of interest for the design of low cost IR detector, especially in the short wave infrared (SWIR; 0.8–3 μm), where the vicinity of the visible range makes the high cost of available technologies even more striking. HgTe nanocrystals are among the most promising candidates to address SWIR since their spectrum can be tuned all over this range while demonstrating photoconductive properties. However, several main issues have been swept under the rug, which prevents further development of active materials and devices. Here we address two central questions, which are (i) the stability of the device under ambient air condition and (ii) the reduction of dark current. Encapsulation of HgTe CQDs is difficult because of their extreme sensitivity to annealing, we nevertheless demonstrate an efficient encapsulation method based on a combination of O2 and H2O repellant layers leading to stability over >100 days. Finally, we demonstrate that the dark current reduction can be obtained by switching from a photoconductive geometry to a photovoltaic (PV) device, which is fabricated using solution and low temperature based approach. We demonstrate fast photoresponse (>10 kHz) and detectivity enhancement by 1 order of magnitude in the PV configuration at room temperature. These results pave the way for narrow bandgap CQD based cost-effective optoelectronic devices in developing next generation SWIR photonic systems.
    Mots-clés : POLE 4, POLYMERES.

  • J. - R. Jiménez, A. Sugahara, M. Okubo, A. Yamada, L. - M. Chamoreau, L. Lisnard, et R. Lescouëzec, « A [FeIII(Tp)(CN)3]− scorpionate-based complex as a building block for designing ion storage hosts (Tp: hydrotrispyrazolylborate) », Chemical Communications, avr. 2018.
    Résumé : Using a scorpionate-based complex, [FeIII(Tp)(CN)3]−, as a building block, a new cyanide-based molecular material [{FeIII(Tp)(CN)3}2NiII(H2O)2]·4H2O (1), which can be viewed as a lower dimensional model of Prussian blue analogues, was investigated as a lithium-ion storage host.
    Mots-clés : ERMMES, POLE 2.
    Pièce jointe Full Text PDF 1.7 Mo (source)

  • Y. Journaux, J. Ferrando-Soria, E. Pardo, R. Ruiz-Garcia, M. Julve, F. Lloret, J. Cano, Y. Li, L. Lisnard, P. Yu, H. Stumpf, et C. L. M. Pereira, « Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story », European Journal of Inorganic Chemistry, vol. 2018, nᵒ 3-4, p. 228-247, janv. 2018.
    Résumé : The aim of this review is to pay tribute to the legacy of O. Kahn. Kahn's credo was to synthesize magnetic compounds with predictable structure and magnetic properties. This is illustrated herein with results obtained by Kahn's group during his Orsay period thirty years ago, but also on the basis of our recent results on the synthesis of coordination polymers with oxamate ligands. The first part of this review is devoted to a short description of the necessary knowledge in physics and theoretical chemistry that Kahn and his group have used to select oxamate ligands, the complex-as-ligand strategy and the synthesis of heterobimetallic systems. Then, we describe the strategies we have later used to obtain the desired target compounds. The use of complexes as building-blocks, associated to a control of the metal ions chirality and stoichiometry, allowed us to obtain coordination polymers with predictable dimensionality. For the synthesis of single-chain magnets (SCMs) we show that the ligand chemical flexibility makes the isolation of the chains in the solid and the occurence of slow magnetic relaxation possible. For 1D and 2D molecule-based magnets (MBMs), the magnetic ordering strongly depends on the interchain or interplane interactions, which are difficult to control. Again the flexibility of the oxamate ligands allowed their strengthening in the solid sate, yielding MBMs with critical temperatures up to 30 K. We will also present our results on 3D coordination polymers, particularly on the porous magnets displaying large octagonal channels. This family of porous MBMs possess outstanding chemical properties, such as post-synthetic transformation in the solid state. Finally, we will also show that oxamate ligands allows the design of multifunctional materials, as in the case of the first chiral SCM. Overall, the results presented in this review show the impressive potential the oxamate ligands have for the design of coordination polymers.
    Mots-clés : Bridging ligands, Coordination Polymer, ERMMES, Heterometallic complexes, Ligand design, Magnetic properties, Metal-Organic Frameworks, Metallacycles, N, O ligands, POLE 2.
    Pièce jointe Full Text PDF 8.5 Mo (source)

  • R. Karim, E. Lepeltier, L. Esnault, P. Pigeon, L. Lemaire, C. Lépinoux-Chambaud, N. Clere, G. Jaouen, J. Eyer, G. Piel, et C. Passirani, « Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide », Nanoscale, vol. 10, nᵒ 28, p. 13485-13501, 2018.
    Résumé : Increasing intracellular drug concentration using nanocarriers can be a potential strategy to improve efficacy against glioblastoma (GBM). Here, the fluorescent-labelled NFL-TBS·40-63 peptide (fluoNFL) concentration on a lipid nanocapsule (LNC) was studied to enhance nanovector internalization into human GBM cells. LNC surface-functionalization with various fluoNFL concentrations was performed by adsorption. LNC size and surface charge altered gradually with increasing peptide concentration, but their complement protein consumption remained low. Desorption of fluoNFL from the LNC surface was found to be slow. Furthermore, it was observed that the rate and extent of LNC internalization in the U87MG human glioblastoma cells were dependent on the surface-functionalizing fluoNFL concentration. In addition, we showed that the uptake of fluoNFL-functionalized LNCs was preferential towards U87MG cells compared to healthy human astrocytes. The fluoNFL-functionalized LNC internalization into the U87MG cells was energy-dependent and occurred possibly by macropinocytosis and clathrin-mediated and caveolin-mediated endocytosis. A new ferrocifen-type molecule (FcTriOH), as a potent anticancer candidate, was then encapsulated in the LNCs and the functionalization improved its in vitro efficacy compared to other tested formulations against U87MG cells. In the preliminary study, on subcutaneous human GBM tumor model in nude mice, a significant reduction of relative tumor volume was observed at one week after the second intravenous injection with FcTriOH-loaded LNCs. These results showed that enhancing NFL peptide concentration on the LNC surface is a promising approach for increased and preferential nanocarrier internalization into human GBM cells, and the FcTriOH-loaded LNCs are a promising therapy approach for GBM. ER
    Mots-clés : CHEMBIO, POLE3.

  • S. H. Kyne, M. Clémancey, G. Blondin, E. Derat, L. Fensterbank, A. Jutand, G. Lefèvre, et C. Ollivier, « Elucidating Dramatic Ligand Effects on SET Processes: Iron Hydride versus Iron Borohydride Catalyzed Reductive Radical Cyclization of Unsaturated Organic Halides », Organometallics, vol. 37, nᵒ 5, p. 761-771, mars 2018.
    Résumé : An iron(II) borohydride complex ([(η1-H3BH)FeCl(NCCH3)4]) is employed as the precatalyst in iron-catalyzed radical cyclizations of unsaturated organic halides in the presence of NaBH4. Mechanistic investigations have established that the ligand bound to the metal center (acetonitrile versus ethylenebis(diphenylphosphine) (dppe)) plays a crucial role in the structure and reactivity of the active anionic iron(I) hydride ([HFeCl(dppe)2]−) and borohydride ([(η1-H3BH)FeCl(NCCH3)4]−) with unsaturated haloacetals. This work provides new insights into iron(I) hydride and borohydride species and their potential implication in single-electron processes.
    Mots-clés : MACO, POLE 1.

  • P. - H. Lanoë, J. Chan, A. Groué, G. Gontard, A. Jutand, M. - N. Rager, N. Armaroli, F. Monti, A. Barbieri, et H. Amouri, « Cyclometalated N-heterocyclic carbene iridium(III) complexes with naphthalimide chromophores: a novel class of phosphorescent heteroleptic compounds », Dalton Transactions, vol. 47, nᵒ 10, p. 3440-3451, mars 2018.
    Résumé : A series of cyclometalated N-heterocyclic carbene complexes of the general formula [Ir(C^N)2(C^C:)] has been prepared. Two sets of compounds were designed, those where (C^C:) represents a bidentate naphthalimide-substituted imidazolylidene ligand and (C^N) = ppy (3a), F2ppy (4a), bzq (5a) and those where (C^C:) represents a naphthalimide-substituted benzimidazolylidene ligand and (C^N) = ppy (3b), F2ppy (4b), bzq (5b). The naphthalimide-imidazole and naphthalimide-benzimidazole ligands 1a,b and the related imidazolium and benzimidazolium salts 2a,b were also prepared and fully characterized. The N-heterocyclic carbene Ir(III) complexes have been characterized by NMR spectroscopy, cyclic voltammetry and elemental analysis. Moreover, the molecular structures of one imidazolium salt and four Ir(III) complexes were determined by single-crystal X-ray diffraction. The structures provide us with valuable information, most notably the orientation of the naphthalimide chromophore with respect to the N-heterocyclic carbene moiety. All compounds are luminescent at room temperature and in a frozen solvent at 77 K, exhibiting a broad emission band that extends beyond 700 nm. The presence of the naphthalimide moiety changes the character of the lowest excited state from 3MLCT to 3LC, as corroborated by DFT and TD-DFT calculations. Remarkably, replacing imidazole with a benzimidazole unit improves the quantum yields of these compounds by decreasing the knr values which is an important feature for optimized emission performance. These studies provide valuable insights about a novel class of N-heterocyclic carbene-based luminescent complexes containing organic chromophores and affording metal complexes emitting across the red–NIR range.
    Mots-clés : ARC, POLE 1.

    lt="Pièce jointe"/> Full Text PDF 1.5 Mo (source)

  • M. Laurans, K. D. Francesca, F. Volatron, G. Izzet, D. Guerin, D. Vuillaume, S. Lenfant, et A. Proust, « Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions », Nanoscale, vol. 10, nᵒ 36, p. 17156-17165, sept. 2018.
    Résumé : Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the organic–inorganic polyoxometalate hybrids [PM11O39{Sn(C6H4)CC(C6H4)N2}]3− (M = Mo, W) endowed with a remote diazonium function is reported together with their covalent immobilization onto hydrogenated n-Si(100) substrates. Electron transport measurements through the resulting densely-packed monolayers contacted with a mercury drop as a top electrode confirms their homogeneity. Adjustment of the current–voltage curves with the Simmon's equation gives a mean tunnel energy barrier ΦPOM of 1.8 eV and 1.6 eV, for the Silicon–Molecules–Metal (SMM) junctions based on the polyoxotungstates (M = W) and polyoxomolybdates (M = Mo), respectively. This follows the trend observed in the electrochemical properties of POMs in solution, the polyoxomolybdates being easier to reduce than the polyoxotungstates, in agreement with lowest unoccupied molecular orbitals (LUMOs) of lower energy. The molecular signature of the POMs is thus clearly identifiable in the solid-state electrical properties and the unmatched diversity of POM molecular and electronic structures should offer a great modularity.
    Mots-clés : E-POM.
    Pièce jointe Full Text PDF 1.6 Mo (source)

  • Y. U. Lee, E. Garoni, H. Kita, K. Kamada, B. H. Woo, Y. C. Jun, S. M. Chae, H. J. Kim, K. J. Lee, S. Yoon, E. Choi, F. Mathevet, I. Ozerov, J. C. Ribierre, J. W. Wu, et A. D'Aléo, « Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon-Near-Zero Organic Thin Films », Advanced Optical Materials, vol. 6, nᵒ 14, p. 1701400, juill. 2018.
    Résumé : Enhanced Kerr nonlinearities are observed in metamaterials such as conducting oxides and doped inorganic semiconductor thin films showing epsilon-near-zero (ENZ) response in the infrared region. However, to achieve ENZ in the visible, artificial metamaterials with more complex nanostructures have to be specifically designed. Here, using sodium [5,6-dichloro-2-[[5,6-dichloro-1-ethyl-3-(4-sulphobutyl)-benzimidazol-2-ylidene]-propenyl]-1-ethyl-3-(4-sulphobutyl)-benzimidazolium hydroxide] and [2,4-bis[8-hydroxy-1,1,7,7-tetramethyljulolidin-9-yl]squaraine] organic thin films, ENZ responses between 450 and 620 nm are demonstrated. Both nonlinear refractive index and nonlinear absorption coefficient are enhanced by more than two orders of magnitude in the ENZ spectral region. These optical effects in the visible spectral range come from the strongly dispersive permittivity of molecular aggregates resulting from the coupling of excitonic transition dipoles. These findings open the path toward a next generation of high-performance solution-processable organic nonlinear optical materials with ENZ properties that can be tuned by molecular engineering.
    Mots-clés : epsilon near zero (ENZ), molecular aggregates, optical Kerr nonlinearity, organic thin film, POLE 4, POLYMERES.
    Pièce jointe Full Text PDF 2.7 Mo (source)

  • L. Lempenauer, A. Soupart, E. Duñach, et G. Lemière, « Synthesis of α-oxygenated β,γ-unsaturated ketones by a catalytic rearrangement strategy », Organic & Biomolecular Chemistry, vol. 16, nᵒ 30, p. 5441-5445, août 2018.
    Résumé : A straightforward two-step entry to α-oxgenated β,γ-unsaturated ketones from readily available α,β-unsaturated ketones is disclosed. It was found that bis(allylic) alcohols undergo a skeletal rearrangement in the presence of 1 mol% of cheap and non-corrosive p-toluenesulfonic acid. Computational studies were conducted to support the mechanism and to rationalise the influence of the catalyst acidity on the product selectivity.
    Mots-clés : MACO, POLE 1.
    Pièce jointe Full Text PDF 807.7 ko (source)

  • lei Liu, S. Li, X. Li, M. Zhong, Y. Lu, Y. Jiajie, Z. Yongmin, et X. He, « Synthesis of NSAIDs–Se derivatives as potent anticancer agents », Medicinal Chemistry Research, vol. 27, nᵒ 9, p. 2071-2078, 2018.

  • Y. Liu, Z. Mao, A. Pradal, P. - Q. Huang, J. Oble, et G. Poli, « Palladium-Catalyzed [3 + 2]-C–C/N–C Bond-Forming Annulation », Organic Letters, vol. 20, nᵒ 13, p. 4057-4061, juill. 2018.
    Résumé : The synthesis of bi- and tricyclic structures incorporating pyrrolidone rings is disclosed, starting from resonance-stabilized acetamides and cyclic α,β-unsaturated-γ-oxycarbonyl derivatives. This process involves an intermolecular Tsuji–Trost allylation/intramolecular nitrogen 1,4-addition sequence. Crucial for the success of this bis-nucleophile/bis-electrophile [3 + 2] annulation is its well-defined step chronology in combination with the total chemoselectivity of the former step. When the newly formed annulation product carries a properly located o-haloaryl moiety at the nitrogen substituent, a further intramolecular keto α-arylation can join the cascade, thereby forming two new cycles and three new bonds in the same synthetic operation.
    Mots-clés : POLE 1, ROCS.
    Pièce jointe Full Text PDF 1.5 Mo (source)

  • D. Lu, S. Zhu, L. F. Sobala, G. Bernardo-Seisdedos, O. Millet, Y. Zhang, J. Jiménez-Barbero, G. J. Davies, et M. Sollogoub, « From 1,4-Disaccharide to 1,3-Glycosyl Carbasugar: Synthesis of a Bespoke Inhibitor of Family GH99 Endo-α-mannosidase », Organic Letters, nov. 2018.

  • J. Lyskawa, F. Stoffelbach, D. Fournier, et P. Woisel, « La « Blue Box » : Une molécule hôte pour élaborer des matériaux macromoléculaires (multi)stimulables hauts en couleur », L'Actualité Chimique, nᵒ 430-431, p. 30-36, 2018.

  • R. Maazaoui, R. Abderrahim, F. Chemla, F. Ferreira, A. Perez-Luna, et O. Jackowski, « Catalytic Chemoselective and Stereoselective Semihydrogenation of Alkynes to E-Alkenes Using the Combination of Pd Catalyst and ZnI2 », Organic Letters, vol. 20, nᵒ 23, p. 7544-7549, déc. 2018.
    Résumé : An efficient E-selective semihydrogenation of internal alkynes was developed under low dihydrogen pressure and low reaction temperature from commercially available reagents: Cl2Pd(PPh3)2, Zn0, and ZnI2. Kinetic studies and control experiments underline the significant role of ZnI2 in this process under H2 atmosphere, establishing that the transformation involves syn-hydrogenation followed by isomerization. This simple and easy-to-handle system provides a route to E-alkenes under mild conditions.
    Mots-clés : POLE 1, ROCS.

  • O. Makrygenni, E. Secret, A. Michel, D. Brouri, V. Dupuis, A. Proust, J. - M. Siaugue, et R. Villanneau, « Heteropolytungstate-decorated core-shell magnetic nanoparticles: A covalent strategy for polyoxometalate-based hybrid nanomaterials », Journal of Colloid and Interface Science, vol. 514, p. 49-58, mars 2018.
    Résumé : Amino-functionalized core–shell magnetic nanoparticles have been covalently grafted with Polyoxometalates (POMs). These multifunctional nanocomposites have been obtained through the coupling of heteropolytungstate-based hybrids bearing carboxylic acid functions with aminopropyl functions that decorate the core–shell nanoparticles. The physical properties of the resulting materials have been studied by a large set of techniques. The very good nanostructuration of the POMs at the surface of the obtained nanoparticles have thus been directly observed by high-resolution transmission electronic microscopy (HR-TEM). Furthermore, the hyperthermia properties of these nanocomposites have been also considered as a function of the size of the magnetic core. Finally, the stability of these suspensions in organic media makes them particularly interesting in the frame of their processing or their potential use as nanocatalysts.
    Mots-clés : Core-shell nanoparticles, E-POM, HR-TEM, Hybrid materials, POLE 2, Polyoxometalates.

  • H. Mamad-Hemouch, L. Bacri, C. Huin, C. Przybylski, B. Thiebot, G. Patriarche, N. Jarroux, et J. Pelta, « Versatile cyclodextrin nanotube synthesis with functional anchors for efficiency ion channel formation: design, characterization and ion conductance », Nanoscale, 2018.
    Mots-clés : CSOB, Cyclodextrin, POLE 3.

  • I. Marghad, D. H. Kim, X. Tian, F. Mathevet, C. Gosmini, J. - C. Ribierre, et C. Adachi, « Synthesis by a Cost-Effective Method and Electroluminescence of a Novel Efficient Yellowish-Green Thermally Activated Delayed Fluorescent Molecule », ACS Omega, vol. 3, nᵒ 2, p. 2254-2260, févr. 2018.
    Résumé : A new thermally activated delayed fluorescent molecule, TRZ 3(Ph-PTZ), containing three phenothiazines as donor units and a 2,4,6-triphenyl-1,3,5-triazine as the acceptor unit was synthesized using a simple cost-effective method based on a cobalt catalyzed cross-coupling. This compound was tested in organic light-emitting diodes and was found to show superior yellowish-green electroluminescence performance with a maximum external quantum efficiency of 17.4% and a maximum luminance value of 7430 cd/m2.
    Mots-clés : POLE 4, POLYMERES.
--- Exporter la sélection au format