Cross coupling of alkylsilicates with acyl chlorides via photoredox/nickel dual catalysis: a new synthesis method for ketones
Etienne Levernier, Vincent Corcé, Louise-Marie Rakotoarison, Adrien Smith, Mengxue Zhang, Stephanie Ognier, Michael Tatoulian, Cyril Ollivier, Louis Fensterbank

To cite this version:
Cross Coupling of Alkylsilicates with Acylchlorides via Photoredox/Nickel Dual Catalysis. A New Synthesis of Ketones

Etienne Leverniera, Vincent Corcéa, Louise-Marie Rakotoarisona, Adrien Smitha, Mengxue Zhangb, Stephanie Ognierb, Michael Tatoulianb, Cyril Olliviera,*, Louis Fensterbankb,***

Photoredox/Nickel dual catalysis using easy oxidized bis-catecholato hypercoordinated silicon derivatives as radical sources and acylchlorides as electrophile allows a new method of formation of dialkyl and alkyl-aryl ketones as well as dibenzyl ketones which are less easily accessed. Flow chemistry can be used functionalized ketones.15 Nevertheless, this transformation relies on conditions involving the use of additives such as 2,6-lutidine or fluoride salts and does not provide highly enolizable benzylic ketones which are difficult to access. For these reasons, we turned our attention to the reactivity of the highly soluble and easily oxidized silicates toward carboxylic acid derivatives and particularly acyl chlorides in order to obtain benzylic and alkyl ketones.

Introduction

Ketones are ubiquitous molecules in our daily life. They are also pivotal substrates in organic chemistry.1 While a myriad of synthetic methods have been developed to reach them, a recurrent pitfall lies in the fact that the keto group is a highly reactive function which can overreact in a lot of experimental conditions. Recently, the emergence of dual photoredox/nickel catalysis2 resulting from the pioneer works of the groups of MacMillan and Doyle3 and of Molander4 has profoundly changed the way of envisaging C-C bond formation by involving radical precursors such as carboxylates,5 methylanilines or cyclic amines,6, 7 trifluoroborates and related derivatives,8 silicates,9 dihydropyridines10 as well as sulfinites11 and electrophiles such as aryl and vinyl halides and also Csp2-O-electrophiles.12, 13

In addition of being environmentally friendly and very mild, the photoredox conditions used in these reactions are usually compatible with many functionalities.12 They have also been found to be compatible for the delivery of ketones.8, 14 For instance, Doyle and co-workers showed that it is possible to obtain \(\alpha\)-amino ketones by using N-aryl amines and electrophiles such as anhydrides or activated esters.14 In the same vein, Molander et al. used this approach to achieve the coupling reaction between acyl chlorides and trifluoroborates as radical precursors to obtain highly enolizable ketones.15

Results and discussion

We first tried this reaction with 1.5 equiv of cyclohexyl silicate 2a \((E_{\text{ox}} = 0.69 \text{ V vs SCE})\) as the radical source and 1 equiv of the benzylic chloride as the electrophile in the presence of Ru(bpy)\textsubscript{3}(PF\textsubscript{6})2+ as photocatalyst, NiCl\textsubscript{2} dme and dtbbpy \((4,4'\text{-di-tert-butyl-2,2'-dipryridyl})\) as ligand in THF under blue LED irradiation at room temperature. Gratifyingly, the expected keto ketone 3a was obtained in 64\% yield. Following this encouraging result, we searched for the best conditions to achieve this reaction (Table 1). The organic photocatalyst 4CzIPN, known to have a long lived excited state and a high oxidative potential \((\tau = 5100 \text{ ns}, E_{\text{ox}} (\text{Ir(PC})^*/\text{Ir(PC - }) = +1.59 \text{ V vs SCE})16, 17 and previously used to oxidize silicates,18 gave ketone 3a in 52\% yield (entry 2). To our delight, iridium photocatalyst Ir\textsubscript{d}([CF\textsubscript{3}]\textsubscript{ppy})\textsubscript{3}(bppy)(PF\textsubscript{6}) provided the best yield of coupling product 3a \((72\%)\). Other solvents (dichloromethane, acetonitrile)

a E. Levernier, Dr. V. Corcé, Dr. C. Ollivier, Prof. L. Fensterbank, L.-M. Rakotoarison, A. Smith
Sorbonne Université, CNRS
Institut Parisien de Chimie Moléculaire
4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France
E-mail: cyril.ollivier@sorbonne-universite.fr, louis.fensterbank@sorbonne-universite.fr

b Dr. M. Zhang, Dr. S. Ognier, Prof. M. Tatoulian
Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris2 PM Group, 11 rue Pierre et Marie Curie 75005 Paris, France
and nickel catalysts, for instance Ni(COD)$_2$) as nickel (0) source were screened but did not result in any improvement. So the Ir(dF(CF$_3$)ppy)$_3$(bpy)(PF$_6$)/NiCl$_2$.dme dual catalytic system was selected and gave the best results.

In these optimized conditions other electrophiles were tested. While no product was observed with the corresponding acyl fluoride derivative, a yield of 40%, 31% and 12% was obtained from respectively activated ester 1b, mixed anhydrides 1c and mixed carbonate 1d (Entries 12-14, Table 1). Nevertheless, these yields were lower than the one previously obtained with benzoylchloride as partner. Therefore, we decided to continue this study with acyl chloride partners.

We first varied the silicate partner (scheme 2) keeping benzoyl chloride 1a as the electrophile. All primary radicals resulted in poor yields of products (below 10%). The main side product in these reactions is the acylation of catechol which suggested that the limiting step is the too slow oxidation of the silicate allowing the catecholate moiety to react on the acyl chloride. More activated alpha acetoxysilicate resulted only in a slight yield increase and adding 6 equiv of benzoyl chloride for 1 equiv of silicate did not change it. Not surprisingly, tert-butyl silicate underwent little cross coupling. Secondary silicates proved however to be generally more rewarding since cyclopentyl, norbornane and cyclohexyl silicate precursors afforded the cross coupling products in 27% (3h), 49% (3g) and 64% (3a) yield respectively. Finally, activated silicates such as the newly prepared (see SI) methoxymethylene one (E$_{ox}$ = +0.71 V vs SCE 2i) and benzyl derivatives gave the best results and provided highly enolizable ketones 3i, 3j and 3k in very good yields, respectively 64%, 82% and 80%.

It appeared also judicious to compare the reactivities of the benzyl trifluoroborate and the benzyl silicate precursors in these conditions with no additive. The benzyl trifluoroborate 4a afforded the desired product 3j with a yield of 50% by NMR (benzoic acid was also observed in the reaction mixture attesting the incomplete conversion of the reactant) compared to the 82% isolated from benzyl silicate 1j with full conversion of the acyl chloride (scheme 3) (10% of monoacylated product were also observed in that case).

Table 1. Optimisation of the reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Photocatalyst (2% mol)</th>
<th>R</th>
<th>Yielda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>[Ru]b</td>
<td>Cl</td>
<td>64%</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>4CzIPN</td>
<td>Cl</td>
<td>52%</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>54%</td>
</tr>
<tr>
<td>4</td>
<td>DMF</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>6%</td>
</tr>
<tr>
<td>5</td>
<td>THF</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>72%</td>
</tr>
<tr>
<td>6a</td>
<td>THF</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>42%</td>
</tr>
<tr>
<td>7</td>
<td>CH$_2$Cl$_2$</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>0%</td>
</tr>
<tr>
<td>8</td>
<td>CH$_3$CN</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>THF</td>
<td>-</td>
<td>Cl</td>
<td>0%</td>
</tr>
<tr>
<td>10a</td>
<td>THF(e)</td>
<td>[Ir]c</td>
<td>Cl</td>
<td>0%</td>
</tr>
<tr>
<td>11</td>
<td>THF</td>
<td>[Ir]c</td>
<td>F</td>
<td>0%</td>
</tr>
<tr>
<td>12</td>
<td>THF</td>
<td>[Ir]c</td>
<td>F</td>
<td>40%</td>
</tr>
<tr>
<td>13</td>
<td>THF</td>
<td>[Ir]c</td>
<td>F</td>
<td>31%</td>
</tr>
<tr>
<td>14</td>
<td>THF</td>
<td>[Ir]c</td>
<td>Me</td>
<td>12%</td>
</tr>
</tbody>
</table>

a NMR yield using 1,3,5 trimethoxybenzene as internal standard; b[Ru] = Ru(bpy)$_3$(PF$_6$)$_2$; c[Ir] = Ir(dF(CF$_3$)ppy)$_3$(bpy)(PF$_6$); d 16h of blue LED irradiation (477 nm) instead of 24h; * No NiCl$_2$.dme was present.

Scheme 2. Silicate scope in the coupling reaction with benzoyl chloride
In order to avoid the previously mentioned catechol acylation side reaction, we tried to employ miniaturized flow reactors to accelerate the desired photooxidative process.

An initial flow set-up was assembled using a Schlenk flask and a recirculating pump (Scheme 4). The reagents were mixed by magnetic stirring inside the Schlenk flask protected from light, pumped through a PTFE tube (1/16" tubing, 134 cm, 0.67 mL at room temperature) under blue LED irradiation (477 nm) which was used as the flow reactor and re-introduced into the Schlenk flask. The coupling of benzyl silicate with benzoyl chloride was used as a model reaction and a yield of 43% for 3j was obtained in 3.8 hours within this flow reactor. Nevertheless the formation of a larger amount of mono and bis-acylated product was observed in contrast to the traces obtained with benzyl silicate in batch. This result can be easily explained by the fact that the side reaction does not need light and that it can occur inside the Schlenk reservoir.

Following this first attempt, a two flux process without recirculation was developed on the same scale as the previous batch reaction (scheme 5).

Encouraged by these series of preliminary findings and exploring the synthetic potential of this new transformation, we examined the influence of the acyl chloride partner (scheme 6) using 2a and 2j as radical sources. The highly electrophilic para-CF$_3$ substituted benzoyl chloride mainly led to the formation of the acylated catechol (mono-acylated and bi-acylated products) with poor yields of cross coupling ketones 3l (8%) and 3q (16%). In contrast, electron richer benzoyl chlorides afforded the corresponding ketones in moderate to good yields (respectively 51% and 52% for the cyclohexyl silicate and 81%, 71% for the benzyl silicate). To our delight, primary and secondary alkyl acyl chlorides provided the products in very high yields leading to ketones with various substitution patterns, featuring for examples cyclopropyl and cyclobutyl benzylketones (3zb and 3zd). Of note double coupling from a diacyl chloride was possible (diketone 3ze). Finally, highly enolizable dibenzyl ketones such as 3w-z could be prepared through this method.
Moreover, these ketones are valuable scaffolds for further elaboration. For instance, 3j has already been used to synthesize natural products or drugs as valdecoxib,21 scabanca (through a Bayer-Villiger oxidation)22 or tamoxifen.23 Based on our recent works and other groups’ ones on related silicate chemistry,8 the following mechanism can be reasonably proposed (Scheme 7). The excited photocatalyst readily oxidizes the silicate to generate an iridium(II) complex and a radical intermediate. Presumably, the latter adds onto the nickel(II) intermediate resulting from the oxidative addition of the acyl chloride partner onto nickel(0). The resulting nickel(III) complex undergoes reductive elimination releasing both the desired product and a nickel (I) species which is then further reduced by iridium(II) and regenerates the iridium(III) photocatalyst.

![Scheme 7. Proposed mechanism](image)

Conclusions

In a nutshell, a novel way of obtaining ketones by dual photoredox/Ni dual catalysis involving bis-catecholato silicates as radical sources and acyl chlorides as electrophiles. While the reaction proved unsatisfactory with primary silicates or highly electrophilic acid chlorides due to adventitious acylation of the catechol moieties, interesting yields of variously substituted ketones have been generally recorded. Notably the highly enolizable dibenzyl ketones could be prepared. Various applications of flow chemistry to such photoredox/nickel dual catalysis reaction have been disclosed and a shorter reaction time has been obtained.

Experimental Section

To a Schlenk flask was added the appropriate silicate (1.5 equiv), [Ir] (2 mol %), 4,4’-di-tert-butyl-2,2’-dipyridyl (4 mol %) and NiCl₂·dme (4 mol %). The Schlenk flask was sealed with a rubber septum and evacuated/purged with vacuum/argon cycles three times. Degassed THF (0.1 M) was introduced followed by addition of the electrophile 2 (1 equiv) and the reaction mixture was irradiated with blue LED (477 nm) at room temperature for 24h under an argon atmosphere. The reaction mixture was diluted with diethyl ether, washed with aqueous saturated K₂CO₃ solution (2 times), brine (2 times), dried over MgSO₄ and evaporated under reduced pressure. The crude residue was purified by flash chromatography.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Sorbonne Université, CNRS and ANR-17-CE07-0018 HyperSilight (PhD grant to EL) for financial support. We also thank Khaoula Jaoudi for the CV of 2i.